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Abstract

A mixture-based framework for robust estimation of ARX-type processes is pre-

sented. The ARX process is presumed to su�er from an unknown noise and/or

distortion. The approach taken here is to model the overall degraded process via a

mixture. Each component of this mixture uses the same ARX model but explores

a di�erent noise/distortion process. Estimation of this mixture uni�es the prepro-

cessing and process modelling tasks. The Quasi-Bayes (QB) procedure for mixture

identi�cation is extended to yield a fast recursive update of the estimator statistics.

This allows non-stationary noise/distortion e�ects to be tracked. An application in

on-line outlier-robust estimation of an AR process is given.
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1 Introduction

Preprocessing of observations is a necessary step prior to estimation of model

parameters. Various �lters for removal of outliers, high frequency noise, and

other artifacts may be sequentially applied to measured data [5,7]. Tuning of

the �lters is a demanding operation, often taking hours of experimentation

by an experienced designer. It may be intractable if the processed data �les

are extensive. Various semi-automatic techniques for �lter tuning have been

developed for particular �lter classes [4,10]. Despite this, preprocessing �lters

are often selected in a heuristic way and manually tuned for optimal perfor-

mance by setting various thresholds and tuning knobs. This determines the

success of the preprocessing, and, therefore, of subsequent process modelling,

prediction and control design [14].

The method presented in this paper uni�es preprocessing and estimation. Pre-

processing is seen as an inevitable part of estimation of the model parameters.

The idea behind the technique is the following: the unknown optimal �lter

is approximated by a rich bank of a priori selected �lters. Each �lter output

yields the regression vector for one component of a mixture. The key property

of the model�common regression parameters across all component models�

implies an elegant recursive update algorithm. Estimator statistics for these

common parameters are formed as a weighted sum of outer products on these

�lter-dependent regression vectors. A fast, adaptive algorithm is revealed.

In Section 2, Bayesian estimation of an ARX process under Gaussian assump-

tions is reviewed. In Section 2.2, it is extended to a mixture framework in

order to cope with preprocessing uncertainties. A fast recursive estimation
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algorithm is derived. In Section 3, the framework is shown, in simulation, to

yield robust ARX process estimates in the presence of outliers. Properties of

the algorithm are discussed brie�y in Section 4.

2 Bayesian ARX estimation

It is supposed that the measured data are generated by the extended AutoRe-

gressive model with Exogenous Input (ARX) [13]. This model represents an

extension of classical Multi-Input Multi-Output (MIMO) ARX models [11],

by allowing known non-linear transformations of the output. It embraces in-

cremental regression models, Autoregressive Moving Average (ARMA) models

with known MA part, and a rich set of non-linear models.

The sequence of data, d(t) = [d1, d2, . . . , dt], measured at times t = 1, . . . , T ,

is formed by data items, dt = [y′t, u
′
t]
′ consisting of the m-dimensional system

output, yt = [y1;t, . . . , ym;t]
′, and (possibly empty) externally-controlled vector

input, ut. Here, ′ denotes transposition. The transformed (�ltered) data are

modelled as follows (the ARX model):

ỹt = θψ̃t + Ω− 1
2 et, f (et) = N (0, Im) . (1)

Here, the m-dimensional vector, ỹt, is the �ltered output. The ρ-dimensional

vector, ψ̃t, is the �ltered regressor. θ is an m× ρ-dimensional matrix of coe�-

cients of the linear, time-invariant model. e(t) = [e1, . . . , et] is a sequence of m-

dimensional, temporally-independent, normally-distributed random variables

with zero mean and identity covariance matrix, Im. Ω is a positive-de�nite

m×m precision matrix. The �ltered quantities, ỹt and ψ̃t, are obtained from

the measured data, d (t), via a known �lter, F (d(t)):
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Ψ̃t =

[
ỹt
ψ̃t

]
=

[
Fy (d(t))

Fψ (ut, d(t− 1))

]
= F (d(t)) . (2)

In (2), Fy (·) = [F1 (·) , . . . , Fm (·)]′ and Fψ (·) = [Fm+1 (·) , . . . , Fm+ρ (·)]′ are
the parts of the transformation, F , generating the �ltered output, ỹt, and the

�ltered regressor, ψ̃t, respectively. Ψ̃t is called the extended regressor.

We assume that the current realization of the external input, ut, brings no

information about the unknown parameters, Θ = {θ,Ω}, beyond what is

available from the data up to that time. This assumption is known as the

Natural Conditions of Control (NCC) assumption [13], and can be expressed

formally as

f (Θ|d (t− 1) , ut) = f (Θ|d (t− 1)) . (3)

Peterka [13] has shown that the posterior and predictive probability density

functions (pdfs) of the extended model (1) have a form identical to the pdfs

for the classical ARX model. This theory is reviewed in the next Section.

2.1 ARX estimation with known �lter

For the case of a known �lter (2), Bayesian estimation and prediction for the

model (1) are governed by the following proposition.

Proposition 1 (Bayesian estimation and prediction of ARX model)

Let the data�preprocessed by (2)�be generated by the ARX model (1), and
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let the m-to-m transformation, Fy (2), have non-zero Jacobian:

JFy ;t (d(t)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂y1;t
, . . . , ∂Fm

∂y1;t

... ...

∂F1

∂ym;t
, . . . , ∂Fm

∂ym;t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

6= 0. (4)

Here, |·| denotes the matrix determinant. Let the prior pdf be of the conjugate

Gauss-Wishart (GW) type [2]:

f(Θ) = GWΘ(V0, ν0) ≡ |Ω|0.5(ν0)

I(V0, ν0)
exp

{
−1

2
tr (V0[−Im, θ]′Ω[−Im, θ])

}
, (5)

where V0 is an (m+ ρ)×(m+ ρ)-dimensional positive-de�nite symmetric ma-

trix, ν0 > 0, and

I(V, ν) = π
1
4
m(m−1)

m∏

j=1

Γ
[
1

2
(ν − j + 1)

]
|Λ|−0.5ν |Vψ|−0.520.5ν(2π)0.5ρ, (6)

V =




Vy V ′
ψy

Vψy Vψ



, Λ = Vy − V ′

ψyV
−1
ψ Vψy.

Here, Vy is the m×m-dimensional upper-left sub-matrix of V .

Then, under the NCC assumption, the posterior pdf of Θ, conditioned by d (t)

and the known �lter, F , is also GWΘ(Vt, νt) (5) with extended information

matrix, Vt, and number of degrees of freedom νt:

f(Θ|d(t), F ) = GWΘ(Vt, νt). (7)

Vt and νt are updated at times t = 1, 2, 3, . . . according to the following recur-

sions:
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Vt =Vt−1 + Ψ̃tΨ̃
′
t = V0 +

t∑

i=1

Ψ̃iΨ̃
′
i, (8)

νt = νt−1 + 1 = ν0 + t. (9)

Hence the update of Vt is with respect to an outer product of the extended

regressor, Ψ̃t (2).

The predictive pdf of yt, given ut and d(t− 1), is of the form:

f
(
yt|ψ̃t, Vt−1, νt−1, F

)
∝

∥∥∥JFy ;t

∥∥∥
(

1 +
ê′tΛ

−1
t−1êt

1 + ζt

)− νt−1−ρ+2+m

2

, (10)

where ‖·‖ denotes the absolute value of (4), and

êt = ỹt − θ̂′t−1ψ̃t,

θ̂t−1 =V −1
ψ;t−1Vψy;t−1, (11)

ζt = ψ̃′tV
−1
ψ;t−1ψ̃t.

In (11), θ̂t−1 = E[θ|d(t− 1), F ] is the mean a posteriori estimate of θ at time

t−1, obtained from (7). If JFy;t is constant (i.e. if Fy(·) (2) is a linear function

of yt), then (10) is a Student-t distribution [2]. Then, also, the mean predicted

value of yt is of the standard AR kind:

yt = E[yt|ut, d(t− 1), F ] =
∥∥∥JFy;t

∥∥∥
−1
θ̂t−1ψ̃t. (12)

PROOF. See [13].

The extended information matrix, Vt, and the number of degrees of freedom,

νt, together form the su�cient statistics for estimation of Θ. Their update, (8)

and (9), is equivalent to the well-known Recursive Least-Squares (RLS) algo-

rithm [11]. The Vt update is often poorly conditioned, and so its LD decom-
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position [3, 13] must be used in order to counteract the associated numerical

instabilities [13].

2.2 Estimation with an unknown �lter

If the �lter F (2) is unknown, its uncertainty can be included in the modelling

procedure as follows:

f(yt, F |ut, d(t− 1),Θ) = f(yt|ut, d(t− 1),Θ, F )f(F |ut, d(t− 1),Θ) (13)
= f(yt|ψ̃t,Θ, F )f(F |d(t− 1)). (14)

The �rst term in the �nal equality follows from the assumed in�uence of the

�lter F . The second term follows from two assumptions, namely (i) the NCC

assumption (3), and (ii) conditional independence of F and Θ given d (t− 1).

The distribution on observations f
(
yt|ψ̃t,Θ, F

)
may be recovered from the

model (1) as follows:

f
(
yt|ψ̃t,Θ, F

)
=

∥∥∥JFy ;t

∥∥∥ f
(
ỹt|ψ̃t,Θ

)
. (15)

The observed process model is then obtained as the marginal pdf of (14) over

all possible �lters:

f (yt|ut, d(t− 1),Θ) =
∫

F ∗
f

(
yt|ψ̃t,Θ, F

)
f (F |d(t− 1)) dF, (16)

where F ∗ denotes the space of all possible �lters. This solution is intractable,

since F ∗ is generally extremely rich, and often uncountable. A reasonable ap-

proximation, yielding a tractable solution, is provided by the following propo-

sition.

7



Proposition 2 (Mixture model for a degraded ARX process) Let the

space of all possible �lters, F ∗, be approximated by a �nite �lter-bank, F , of

c <∞ representative �lters:

F = {Fi, i = 1, . . . , c} . (17)

Then, the observed process model (16), conditioned by F , has the following

mixture form asymptotically:

f (yt|ut, d(t− 1),Θ, α,F ) =
c∑

i=1

f
(
yt|ψ̃i;t,Θ, Fi

)
αi, (18)

where

ψ̃i;t denotes the regression vector formed by data �ltered by Fi, the ith known

�lter in the �lter-bank (2);

f
(
yt|ψ̃i;t,Θ, Fi

)
is the parameterized component which assumes that the data,

when �ltered by Fi, i.e. yi;t, is ARX (1) with Fi-�ltered regression vector,

ψ̃i;t (2);

α = [α1, . . . , αc] is a vector of time-invariant component weights, such that

αi ∈ α∗ ≡ {αi ≥ 0,
∑c
i=1 αi = 1}.

PROOF. Rewriting (16), using (13) and (14), for the assumed �nite approx-

imation, F ∗ = F :

f (yt|ut, d(t− 1),Θ, α,F ) =
c∑

i=1

f (yt|ut, d (t− 1) ,Θ, Fi) Pr [Fi|d(t− 1)]

=
c∑

i=1

f
(
yt|ψ̃i;t,Θ, Fi

)
αi;t,

where αi;t = Pr [Fi|d(t− 1)] is a t-dependent probability mass function; i.e.
∑c
i=1 αi;t = 1, αi;t ≥ 0,∀t. For a �xed Fi, αi;t is a bounded martingale with
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respect to the σ-algebra generated by the data d (t− 1), so that αi;t converges

almost surely to a constant probability αi, as t → ∞. See, for example, [12,

page 64, item I.A]. 2

Hence, the task of parameter estimation with unknown �lter, F , can be re-

placed, approximately, by the task of parameter estimation for the mixture

model (18). The model parameters consist of the common ARX parameters,

Θ, and t-independent weights, α.

General guidelines for choosing �lter candidates is outside the scope of this

communication. However, for particular noise models, selection of a suitable

�lter-bank may follow naturally from analysis of the problem. This is true of

the outlier removal problem presented in Section 3. A �lter selection approach

for the ARMAX model can be found in [8].

The mixture model (18) yields a tractable estimation task. Methods for esti-

mation of the parameters of mixture models are typically based on the Expec-

tation Maximization (EM) algorithm [6,15]. However, a special feature of the

model (18)�namely the common parameterization of each component model

via the same set Θ�can be exploited to yield a novel and e�cient recursive

estimation technique. Success depends on preserving the advantageous recur-

sive properties of ARX estimation outlined in Proposition 1. This is achieved

via the Quasi-Bayes approximation [9], as presented in the next proposition.

The following assumptions are made:

(1) The �xed �lter-bank, F = {Fi, i = 1, . . . , c}, is known a priori. The pdf of

the observed data, yt, for a known (active) transformation Fj, j ∈ 1, . . . , c,
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at time t, is f(yt|ψ̃j;t,Θ, Fj) =
∥∥∥JFj,y;t

∥∥∥ f
(
ỹj;t|ψ̃j;t,Θ

)
, as described by

model (1). Here, ỹj;t denotes the output, �ltered by Fj.

(2) The posterior pdf of the mixture parameters, Θ, α, at time t− 1, has the

form

f (Θ, α|d(t− 1),F ) = GWΘ(Vt−1, νt−1)Diα(κt−1), (19)

t = 1, 2, 3, . . . Here, d(0) is empty, GWΘ(·) is given by (5), and V0, ν0, κ0

are assigned a priori. The assumed Dirichlet pdf on α is de�ned as

Diα(κ) ≡
c∏

i=1

ακi−1
i

Γ(κi)
Γ

(
c∑

i=1

κi

)
,

where κ = [κ1, κ2, . . . , κc]
′ , κi ≥ 0, and Γ (·) is the Gamma function [1].

Proposition 3 (Quasi-Bayes (QB) estimation of mixture model (18))

Consider a new, unobserved, random variable, it ∈ {1, . . . , c}, which points to

the component active at time t, and is governed by the time-invariant proba-

bilities, Pr[it = i|d(t − 1), α] = αi (Proposition 2). (14) may be re-written in

terms of it (using the same assumptions as those governing (14)), as follows:

f(yt, it|ut, d(t− 1),Θ, α,F ) = f(yt|ψ̃it;t,Θ, Fit)αit . (20)

Under the NCC assumption (3), and assumptions (1)�(2) above, the following

statements are true:

(1) The marginal pdf f(yt|ut, d(t − 1),Θ, α,F ) of the introduced pdf (20) is

the mixture model (18).

(2) The joint posterior pdf of Θ and α, augmented by the pointer it, can be

written in the form:
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f(Θ, α, it|d(t),F )∝GWΘ

(
Vt−1 +

c∑

i=1

δi,itΨ̃i;tΨ̃
′
i;t, νt−1 + 1

)
× (21)

Diα


κt−1 +

c∑

i=1

δi,it [0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . .]′


 ,

where δi,it =
{

1 if i=it
0 if i 6=it , is the Kronecker function, and Ψ̃i;t =

[
ỹ′i;t, ψ̃

′
i;t

]′,

i = 1, . . . , c, is the �ltered extended regressor (2) generated by the ith

�lter, Fi, of the �lter-bank, F .

(3) The unknown value of the Kronecker function, δi,it, has posterior expec-

tation

wi;t ≡ E [δi,it|d(t),F ] ∝ I
(
Vt−1 + Ψ̃i;tΨ̃

′
i;t, νt−1 + 1

)
(κi;t−1 + 1). (22)

Since ∑c
i=1wi;t = 1, the constant of proportionality in (22) is available.

(4) Adopting the certainty equivalent approximation,

δi,it ≈ E[δi,it|d(t)] = wi;t, i = 1, . . . , c, (23)

then (22) yields an approximate marginal for (21), which preserves the

GW form:

f(Θ, α|d(t),F ) = GWΘ(Vt, νt)Diα(κt). (24)

The statistics in (24) are updated according to the following recursions:

Vt =Vt−1 +
c∑

i=1

wi;tΨ̃i;tΨ̃
′
i;t, (25)

νt = νt−1 + 1, (26)
κi;t =κi;t−1 + wi;t. (27)

This constitutes Quasi-Bayes (QB) estimation of the mixture model (18).

(23) is the QB approximation, which preserves the GW -Di distributional

form (19) during the update (24).
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PROOF. The �rst statement is directly implied by marginalization of the

model (20) over it. The second statement (i.e. exact updating via random

variables, δi,it) uses the extended ARX version of the model (1), the assumed

GW -Di form of the parameter distribution (19), and Bayes' rule, applied

under the NCC assumption (3). The third statement requires marginalization

of GWΘ (·) in (21) over Θ and Diα (·) over α. The result (22) invokes the

predictive Student pdf form (10) of the former and the elementary property

of the Dirichlet pdf, namely E[αi|κ] ∝ κi, for the latter. The �nal recursion

(25) is implied directly by substituting the adopted QB approximation (23)

into (21). 2

Note, from (22), that wi;t = Pr [it = i|d(t),F ], which is the active �lter prob-

ability distribution at time t. The time-variant nature of this measure will be

important in the implied data preprocessing algorithm (Section 3).

2.3 Output prediction

The predictive model can be obtained by marginalization, substituting (18)

and (19), and using the NCC assumption (3):

f (yt|ut, d(t− 1),F ) =
∫
Θ∗

∫
α∗ f (yt,Θ, α|ut, d(t− 1),F ) dΘdα

=
∫

Θ∗

∫

α∗
f (yt|Θ, α, ut, d(t− 1),F ) f (Θ, α|ut, d(t− 1),F ) dΘdα

=
∫

Θ∗

∫

α∗

c∑

i=1

f
(
yt|ψ̃i;t,Θ, Fi

)
αiGWΘ(Vt−1, νt−1)Diα (κt−1) dΘdα

=
c∑

i=1

∫

α∗
αiDiα (κt−1) dα

∫

Θ∗
f

(
yt|ψ̃i;t,Θ, Fi

)
GWΘ(Vt−1, νt−1)dΘ (28)

∝
c∑

i=1

α̂i;t−1f
(
yt|ψ̃i;t, Vt−1, νt−1, Fi

)
, (29)
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where integration over the space, Θ∗, of Θ in (28) yields predictor (10) for the

ith �lter, Fi, and integration over the space, α∗, of α yields the mean value of

the Dirichlet distribution, namely

α̂i;t−1 = κi;t−1/

(
c∑

i=1

κi;t−1

)
. (30)

The overall predictive pdf is therefore a mixture of �lter-dependent predictors

(10), weighted by the expected �lter weights, α̂i;t−1.

In many applications, only the moments of (29) are required. Linearity of

expectation implies that the overall non-central moments are obtained as the

convex combination of the non-central moments of the individual predictors

(12), weighted by α̂i;t−1.

3 Example: Outlier-Robust AR Estimation

In this simulation, scalar data were realized from a second-order AR process

(m = 1, ρ = 2, Θ = [θ1, θ2, ω]′), degraded by a random, high-variance outlier

on every 30th sample. In the absence of a �lter, the extended information

matrix, Vt (8)�forming, with νt (9), su�cient statistics for estimation of Θ�

is updated by the outer product of the extended regressor Ψt = [yt, yt−1, yt−2]
′.

Therefore, an outlier degrades a parameter estimate if it appears in at least

one entry of this regressor. An ideal preprocessing �lter, F , should have no

in�uence on the standard ARX update when there is no outlier, but in other

cases it should replace the a�ected entry (assumed isolated for simplicity)

with an appropriate reconstructed value, y·. This motivates the design of a

�lter-bank, F , with the following members:
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F1 : ỹ1;t = yt ψ̃1;t = [yt−1, yt−2]
′ standard AR model

F2 : ỹ2;t = yt/h ψ̃2;t = [yt−1, yt−2]
′ /h AR model with higher noise variance,

h2ω−1

F3 : ỹ3;t = yt ψ̃3;t =
[
yt−1, yt−2

]′ replacing 1-step-delayed output

by expected value

F4 : ỹ4;t = yt ψ̃4;t =
[
yt−1, yt−2

]′ replacing 2-step-delayed output

by expected value

A key advantage of this choice is that F is parameterized with respect to just

one single scalar, h > 1, which appears in F2. Selection of this parameter may

be interpreted as setting a tuning knob for F , but simulations indicate that

estimates are quite robust with respect to the choice of h. However, if the

presence of a tuning knob is undesirable, F2 can be replaced by several �lters,

each parameterized using a candidate value of h.

The �lters F3 and F4 replace a hypothesized outlier in the regressor by a

reconstructed value, y·. An optimal process reconstruction for each �lter in

the �lter-bank is the mean value of the predictor (12), yi;t, associated with this

�lter. The �ltered value, conditioned by knowledge of the active component,

it, at time t is therefore

yit;t =
c∑

i=1

δi,ityi;t. (31)

In order to remove the dependence on the unknown pointer random variable,

it, the QB approximation (23) is applied once again, replacing δi,it by its
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Figure 1. Left: outlier-degraded 2nd-order AR process data. Note the high-variance

outlier at t = 30. Reconstruction and uncertainty bounds are also given. Right:

active �lter probabilities, wi;t, around t = 30.

expected value, wi;t (22), for each i = 1, . . . , c. Therefore, substituting (12)

and (23) into (31), the reconstructed value of the process output for the given

�lter-bank is

yt = θ̂t−1

(
w1;tψ̃1;t + hw2;tψ̃2;t + w3;tψ̃3;t + w4;tψ̃4;t

)
, (32)

using parameter estimates (11). The measured and reconstructed outputs of

the process are compared in Figure 1 (left).

Note that the required Jacobian (12) for each of the �lters, Fi, i = 1, · · · , 4, in
the �lter-bank above is, respectively, JFi,y;t = 1, i = 1, 3, 4, and JF2,y ;t = h−1.

In fact, the AR-type predictor (12) is valid in this instance only because these

Jacobians are constant, thereby preserving the Student-t form of the predictive

pdf (10) in each case (Section 2.1). Nevertheless, in more general cases of non-

linear �lters, Fi, the proposed QB reconstruction would still be formed via

the same wi;t-weighted linear combination of appropriate predictors as that in

(32).
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Figure 2. Degraded AR model estimation, with and without �lter-bank.

The main objective of this work was to achieve robust estimation of the model

parameters, Θ. A comparison of poles of the estimated process � with and

without the �lter-bank preprocessing � is given in Figure 2, indicating the

success of the approach. Note, �nally, that this robust estimation is achieved

on-line, i.e. in one sweep through the data.

4 Discussion

The introduced algorithm, (24)-(27), for estimation of the probabilistic mix-

ture model (18) is based on the Quasi-Bayes (QB) approximation (23). The

algorithm is a Bayesian alternative to the standard EM algorithm [6]. Specif-

ically, in the introduced QB algorithm, estimates of active component proba-

bilities, wt (22), are evaluated using the full distribution (5) of the component

parameters, Θ. In contrast, point estimates, Θ̂, of the component parameters

are used in the EM algorithm. This ability to account for the uncertainty in

Θ is an important advantage of the QB approach over the EM approach to

mixture estimation.

16



Accuracy and convergence issues for the QB approximation (23) were stud-

ied in [15]. It was shown, for example, that estimation of mixture weights is

asymptotically e�cient if the supports of the components, f (yt|Fi), do not

overlap. This condition is not satis�ed for the �lter-bank mixture (18). How-

ever, it is approximately true when the chosen �lters in the �lter-bank F (17)

are su�ciently distinct. Our experiments support this statement.

Computational complexity of the algorithm for estimation of the degraded

ARX model, (25)-(27), can be compared to the computational complexity

for estimation of the standard ARX model (Proposition 1). Each step of the

QB algorithm requires 2c updates of the statistics Vt (i.e. c in (22) and c in

(25)) rather than the single update required in the standard algorithm (8).

Furthermore, c normalizations of the kind in (6) must be evaluated in the QB

algorithm, one for each wi;t, i = 1, . . . , c (22). If the algorithm is implemented

using LD decompositions [3, 13], then the Vt-update is the most expensive

operation. Hence, the QB algorithm for estimation of the mixture model (18)

of a degraded ARX process, using c �lters, is approximately 2c-times more

computationally expensive than standard estimation of an ARX model of the

same order.

5 Conclusion

A mixture framework for robust recursive estimation of ARX processes has

been presented in the paper. It has been shown that an ARX process de-

graded by an unknown noise/distortion can be approximated by a mixture of

processes with identical ARX parameterization but di�erent known candidate

preprocessing �lters. The unknown weights of the �lters in the �lter-bank are
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estimated (30) using model predictions, (22), (27), and so the task of pre-

processing is uni�ed with the task of estimation, within a consistent model.

Expertise may be required in the choice of �lter-bank members. However, this

e�ort replaces the considerable experience and skill typically demanded for

the tuning and supervision of ad hoc preprocessing �lters.

An adaptive algorithm for parameter estimation has been derived. This con-

fers two principal bene�ts: (i) non-stationary noise/distortion e�ects can be

tracked via step-wise re-estimation of the �lter weights; and (ii) the prepro-

cessing and recursive estimation tasks are accomplished together in one sweep

of the data. This is of potentially great importance in the adaptive control of

processes whose observations are noisy and/or distorted.

The outlier-robust estimation results presented in this paper are promising,

but a broader class of noise and distortion phenomena is amenable to this

framework.
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